/* * WMM-Application: * single raised strip: dispersion curves, * modes and propagation constants for varying width */ #include #include #include #include"wmminc.h" /* waveguide parameters */ #define Wgpns 1.95 // substrate refractive index #define Wgpnf 2.2 // film refractive index #define Wgpnc 1.0 // cover: air #define Wgpl 1.3 // vacuum wavelength #define Wgph 0.7 // rib height /* definition */ Waveguide wgdef(double w) { Waveguide g(1, 1); g.hx(0) = 0.0; g.hx(1) = Wgph; g.hy(0) = -w/2.0; g.hy(1) = w/2.0; g.n(0,0) = Wgpns; g.n(0,1) = Wgpns; g.n(0,2) = Wgpns; g.n(1,0) = Wgpnc; g.n(1,1) = Wgpnf; g.n(1,2) = Wgpnc; g.n(2,0) = Wgpnc; g.n(2,1) = Wgpnc; g.n(2,2) = Wgpnc; g.lambda = Wgpl; return g; } /* analysis parameters */ WMM_Parameters pardef() { WMM_Parameters p; p.vform = HXHY; p.vnorm = NRMMH; p.ccomp = CCALL; p.ini_d_alpha = 0.01; p.ini_N_alpha = 20; p.ini_alpha_max = 2.0; p.ini_steps = 50; p.ref_num = 5; p.ref_exp = 4.0; p.ref_sdf = 0.5; p.fin_d_alpha = 0.01; p.fin_N_alpha = 30; p.fin_alpha_max = 2.5; p.btol = 1.0e-7; p.mshift = 1.0e-8; return p; } int main() { // Polarization pol = QTE; Polarization pol = QTM; WMM_Parameters par = pardef(); int m; WMM_ModeArray ma; WMM_ModeArray modes; Waveguide wg; int nfms, nfma; // files for propagation constants char pcnam[20] = "__pc__"; int w; double width; double neffmax; pcnam[0] = poltochar1(pol); pcnam[1] = poltochar2(pol); if(pol == QTE) { neffmax = 2.11; } if(pol == QTM) { neffmax = 2.10; } for(w=0; w<=50; w+=1) { // define the waveguide width = 0.7+w*0.1; wg = wgdef(width); modes.clear(); // compute symmetrical modes nfms = WMM_modeanalysis(wg, pol, SYM, Wgpns, neffmax, par, dig10(w), dig1(w), ma); // append propagation constants to appropriate file for(m=0; m<=nfms-1; ++m) { pcnam[4] = 's'; pcnam[5] = '0'+m; apptoxyf(pcnam, width, ma(m).beta); fprintf(stderr, "\n -> sm%d(%g) %g\n", m, width, ma(m).beta); } // store symmetrical modes modes.merge(ma); ma.clear(); // compute antisymmetrical modes nfma = WMM_modeanalysis(wg, pol, ASY, Wgpns, neffmax, par, dig10(w), dig1(w), ma); // append propagation constants to appropriate file for(m=0; m<=nfma-1; ++m) { pcnam[4] = 'a'; pcnam[5] = '0'+m; apptoxyf(pcnam, width, ma(m).beta); fprintf(stderr, "\n -> am%d(%g) %g\n", m , width, ma(m).beta); } // store antisymmetrical modes modes.merge(ma); ma.clear(); // save the entire mode set to disk, sort first modes.sort(); // modes.write_def(dig10(w), dig1(w)); } return 0; }